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1. Introduction

In many papers, the problem of the non-linear vibration of a two-mass system is discussed.
Usually, the free vibrations are analyzed. In Refs. [1,2], the systems which contain two masses
connected by a spring with strong non-linear properties are considered. The vibrations of the
system are described with a system of two coupled second order non-linear differential equations
and the exact solutions are obtained in the form of the Jacobi elliptic function. In Refs. [3,4], the
model considered is more complex: the non-linear elastic properties of the springs which connect
the masses to fixed supports are also taken into consideration. The concept of normal modes is
assumed for solving the differential equations of motion of the system with cubic non-linearity. In
Ref. [5], the non-similar normal modes of free oscillations of a coupled non-linear oscillator are
examined. Beside cubic non-linearities, quadratic non-linearities are also investigated. For all of
these considerations, it is common that only the free vibrations of the system are treated. In the
paper by Vakakis and Caughey [6], forced vibrations are also discussed.
The aim of the present paper is to determine the forced vibration properties of a free system

which contains two masses connected by a spring with quadratic non-linear properties and on
which a constant force acts. The vibration of a one-degree-of-freedom mechanical system with a
quadratic non-linearity [7] and constant excitation force [8] was investigated previously. The
second order non-linear differential equation with a strong square non-linearity is exactly solved
applying Jacobi elliptic function. The influence of the excitation on the amplitude, frequency and
period of forced vibrations are determined. In this paper, the methodology for solving this
problem is extended to a system of two non-homogenous coupled differential equations with a
strong square non-linearity.
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2. Model of the system

The physical model of the system is shown in Fig. 1. It contains two masses, m1 and m2; which
are connected with a spring with a non-linear elastic property. The non-linearity is of the
quadratic type. A constant excitation force F acts on the mass m1: The kinetic and the potential
energies of the system are

T ¼ 1
2

m1 ’x
2 þ 1

2
m2 ’y

2;

V ¼ 1
2

cðx � yÞ2 þ 1
3

b2ð7Þjx � yjðx � yÞ3; ð1Þ

where x and y are the deflections of the masses, c and b2 are constant coefficients. In the relation
for the potential energy, the absolute function is used. The force in the spring is a quadratic
function of deformation and the condition of antisymmetry is evident. If the spring is extended, a
force which has the tendency to relax and to put the spring in the previous state appears. In that
case, the deformation is positive. When the spring is pressed, the deformation is negative. The
signs in the bracket ð7Þ indicate the type of the spring, i.e., the plus sign in the bracket is for hard
spring and the minus sign in the bracket is for soft spring.
Using relations (1) and the fact that the force F acts, the mathematical model of the system is

m1 .x þ cðx � yÞ þ b2ð7Þjx � yjðx � yÞ2 ¼F ;

m2 .y � cðx � yÞ � b2ð7Þjx � yjðx � yÞ2 ¼ 0; ð2Þ

with respect to the initial conditions

xð0Þ ¼ yð0Þ ¼ 0; ’xð0Þ ¼ ’yð0Þ ¼ 0: ð3Þ

3. Solving procedure

Introducing the new variable

X ¼ x � y ð4Þ

in Eqs. (2), the transformed equations of motion are

m1 .x þ cX þ ð7Þb2jX jX 2 ¼ F ;

m2 .x � m2
.X � cX � ð7Þb2jX jX 2 ¼ 0: ð5Þ
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Eliminating .x in Eq. (5), the following differential equation is obtained:

.X þ c
M

m1m2
X þ ð7Þb2

M

m1m2
jX jX 2 ¼

F

m1
; ð6Þ

where the total mass of the system is M ¼ m1 þ m2: Differential equation (6) is a single non-
homogenous second order differential equation with a quadratic non-linearity. For the special
case when the elastic property of the spring is linear, Eq. (6) transforms to

.X þ c
M

m1m2
X ¼

F

m1
: ð7Þ

Summarizing Eqs. (5) it is

M .x ¼ m2
.X þ F ; ð8Þ

and after integration and using the initial conditions (3) it is

x ¼
m2

M
X þ

Ft2

2M
: ð9Þ

From Eqs. (4) and (9) it is

y ¼ �
m1

M
X þ

Ft2

2M
: ð10Þ

Eqs. (9) and (10) are the solutions of the system of differential equations (2) with the initial
conditions (3), where X is the solution of the differential equation (6) for the non-linear case and
of the differential equation (7) for the linear case.
Now introduce the following parameters:

c� ¼
o2

m1m2
; b2� ¼

ðo�Þ2

m1m2
; a ¼

F

m1M
; ð11Þ

where

m1 ¼
m1

M
; m2 ¼

m2

M
; o2 ¼

c

M
; ðo�Þ2 ¼

b2

M
:

Substituting Eq. (11) into Eq. (6), the following differential equation is obtained:

.X þ c�X þ ð7Þb2�jX jX 2 ¼ a; ð12Þ

with the initial conditions which are according to Eq. (3)

X ¼ 0; ’X ¼ 0: ð13Þ

In Ref. [8], the solution of differential equation (12) for the initial conditions (13) is considered. It
is concluded that the solution is of the oscillatory type and the function X is non-negative for all
values of time t:
Analyzing relations (9) and (10) which describe the motion of the masses and using the

previously mentioned comment on the solution X given in Ref. [8], it is obvious that the motion of
both masses is a simple superposition of two separate motions: one oscillatory motion, as the
solution of Eq. (12) is of oscillatory type, and a non-oscillatory motion which is a quadratic time
function. The solutions have the identical form for the linear and non-linear cases. As the function
X is non-negative, the motion xðtÞ of the mass m1 (9) on which the force F acts is also positive as
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the oscillatory motion is added to the non-oscillatory motion. The motion yðtÞ of the mass m2 (10)
is obtained by subtraction of the oscillatory motion of the non-oscillatory motion. It is evident
that the total motion depends on the oscillations and it is of special interest to analyze them. The
systems with linear spring, hard spring and with soft spring are considered separately.

3.1. System with hard spring

For the system with hard spring properties the upper sign in Eq. (12) is evident. According to
the results shown in the Ref. [8], the particular solution of Eq. (12) for Eq. (13) is

X ¼
Ah

1þ b2�A2
h

3a

sd2 Oht

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

b2�A2
h

3a

s
;

b2�A2
h

3a

1þ b2�A2
h

3a

� �
0
B@

1
CA; ð14Þ

where

Oh ¼
ffiffiffiffiffiffiffiffi

a

2Ah

r
; ð15Þ

and

Ah ¼
3

4

c�

b2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

16

3

b2�a

ðc�Þ2

s
� 1

" #
: ð16Þ

It is an oscillatory solution which is a function of the Jacobi elliptic function sd [9]. Applying the
symbols (11) and the physical sense of the terms in relations (14)–(16), the amplitude of vibration
is

A�
h ¼

Ah

1þ ððo�Þ2MA2
h=3m2F Þ

; ð17Þ

and the frequency of vibration is

O�h ¼ Oh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

b2�A2
h

3a

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2Ahm1

F

M
þ

Ah

6

ðo�Þ2

m1m2

s
; ð18Þ

and the modulus of the Jacobi elliptic function is

k2
h ¼

ðo�Þ2A2
h

3m2
M
F

1þ ðo�Þ2A2
h

3m2
M
F

h i; ð19Þ

where

Ah ¼
3

4

o
o�

� �2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

16

3

o�

o

� �2
F

M

� �
m2
o2

s
� 1

2
4

3
5: ð20Þ
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Substituting Eq. (14) into Eqs. (9) and (10), the motion of the two-mass system is

xh ¼ m2A
�
h sd2ðO�h t; k2

hÞ þ
Ft2

2M
;

yh ¼ � m1A
�
h sd2ðO�h t; k2

hÞ þ
Ft2

2M
: ð21Þ

In Fig. 2a, the frequency O�h –m1 (mass ratio) diagrams for various values of non-linearities o� and
constant excitation ratio ðF=M ¼ 10Þ and in Fig. 2b for various excitation ratios F=M and
constant non-linearity ðo� ¼ 1Þ are plotted. It is assumed that o ¼ 1: The frequency O�h has a
tendency to decrease from infinity for m1 ¼ 0 to a minimal value at a certain value of mass ratio
which is higher than m1 ¼ 0:5; and after that the frequency increases from this minimal value to
infinity for m1 ¼ 1 by increasing of the mass ratio m1: The frequency of vibration depends on the
excitation parameter F=M and on the coefficient of non-linearity: the higher the value of the
excitation the higher the value of the frequency. The higher the value of the coefficient of non-
linearity the higher the value of the frequency. The mass ratio m1 for the minimal value of the
frequency also depends on the value of the excitation ratio F=M and coefficient of non-linearity
o�: the smaller the value of F=M the corresponding mass ratio is closer to m1 ¼ 0:5: The same is
true for the smaller values of the coefficient of non-linearity.
From Eq. (19), it is evident that the modulus of the Jacobi elliptic function depends on the mass

ratio m1; on the excitation ratio F=M and the non-linearity: the higher the value of the non-
linearity the modulus of the Jacobi elliptic function is higher and the smaller the excitation the
smaller the value of the modulus.
In Fig. 3a, the amplitudes of vibrations of both the masses: Ahx ¼ m2A

�
h and Ahy ¼ �m1A

�
h as

functions of the mass ratio m1 for various values of non-linearities o� and constant excitation
ratio ðF=M ¼ 10Þ and in Fig. 3b for various excitation ratios F=M and constant non-linearity
ðo� ¼ 1Þ are plotted. The amplitude Ahx has a tendency to monotonic decrease from a maximal
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Fig. 2. O–m1 diagrams for (a) linear, hard and soft springs; (b) o�=1 and various values of F=M:

L. Cveticanin / Journal of Sound and Vibration 270 (2004) 441–449 445



value (AhxÞmax for m1 ¼ 0 to zero for m1 ¼ 1: The amplitude Ahy is zero for m1 ¼ 0 and m1 ¼ 1 and
has a minimal value for m1 in the interval 0:5om1o1: The amplitudes of both masses depend on
the excitation ratio and coefficient of non-linearity, too: the amplitudes are higher for higher
values of the excitation ratio and also for the higher values of the coefficient of non-linearity.

3.2. System with soft spring

For the mechanical system with soft spring, the lower sign in Eq. (12) is regular and its complete
solution for the initial conditions (13) is according to [8]

X ¼ As sn
2

ffiffiffiffiffiffiffiffi
a

2As

r
t;

b2�A2
s

3a

� �
; ð22Þ

where

As ¼
3

4

c�

b2� 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

16

3

ab2�

ðc�Þ2

s" #
: ð23Þ

The solution has the form of the Jacobi elliptic function sn [9]. The solution is of the oscillatory
type. Analyzing relation (23) it is evident that there is a limitation for the oscillatory motion of the
system with soft spring. Namely, the motion is real if the following relation is satisfied:

16

3

ab2�

ðc�Þ2
p1: ð24Þ

Introducing relations (11) into Eq. (22), the frequency of vibration is

Os ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F

2Mm1As

s
; ð25Þ
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the modulus of the Jacobi elliptic function

k2
s ¼

ðo�Þ2MA2
s

3m2F
; ð26Þ

and the amplitude of vibration

As ¼
3

4

o
o�

� �2
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

16

3

o�

o

� �2
F

M

m2
o2

s2
4

3
5: ð27Þ

Substituting Eq. (22) into Eqs. (9) and (10) the motion of the two-mass system is

xs ¼ m2As sn
2ðOst; k

2
s Þ þ

Ft2

2M
;

ys ¼ � m1As sn
2ðOst; k

2
s Þ þ

Ft2

2M
: ð28Þ

The frequency Os–m1 (mass ratio) diagrams are plotted in Fig. 2a and b for the excitation ratio
F=M ¼ 0:1 and the non-linearity ðo�Þ2 ¼ 0:1 and o� ¼ 1; respectively. In Fig. 4a, the amplitudes
of vibrations of the both bodies: Asx ¼ m2As and Asy ¼ �m1As as functions of the mass ratio m1 for
various values of non-linearities o� and constant excitation ratio ðF=M ¼ 0:1Þ and in Fig. 4b for
various excitation ratios F=M and constant non-linearity ðo� ¼ 1Þ are plotted. It is assumed that
o ¼ 1: The discussion given for the system with hard spring are the same as for the soft spring, as
the forms of the curves are the same for the both types of non-linearity. The only difference is that
the minimal value of Asy and Os is for m1 which is in the interval 0om1o0:5: For smaller values of
the excitation force and the coefficient of non-linearity the minimal value is for m1 closer to
m1 ¼ 0:5:
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For the linear case when b2 ¼ 0 the modulus of Jacobi elliptic function (26) is zero and
according to Ref. [10], solution (22) transforms to

X ¼
2a

c�
sin2

ffiffiffiffiffi
c�

p
2

t

 !
: ð29Þ

Substituting Eq. (29) into Eqs. (9) and (10), applying relations (11) it is

x ¼ Alx sin
2ðol tÞ þ

Ft2

2M
; y ¼ Aly sin

2ðol tÞ þ
Ft2

2M
; ð30Þ

where the amplitudes of the linear system are

Alx ¼ 2
F

M

ð1� m1Þ
2

o2
; Aly ¼ �2

F

M

m1ð1� m1Þ
o2

; ð31Þ

and ol ¼ 0:5o=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1ð1� m1Þ

p
is the frequency of vibration. In Figs. 2a and 3a, the ol–m1; Alx–m1

and Aly–m1 curves are plotted. The frequency of vibration depends on the mass ratio and does not
depend on the excitation force. Analyzing the curves it is evident that the amplitudes of vibrations
depend on the mass ratio m1 and on the value of excitation ratio F=M:

4. Comparison of the results and the conclusions

Now we compare the solutions obtained for the system with a linear spring, a non-linear hard
spring and a non-linear soft spring. It can be concluded:

1. For the two-mass system connected with a linear or non-linear spring with quadratic non-linear
properties on which a constant excitation force acts the motion of the masses is a simple
superposition of a non-vibrational and vibrational motion. The oscillatory motions of both the
masses in the system have the same periods of vibration and both the masses have a
simultaneous oscillatory motion.

2. The frequency of vibration and the period of vibration of the masses m1 and m2 depend on the
rigidity properties of the spring, on the total mass M of the system and its distribution and also
on the excitation force. For the systems with the same mass ratio but different types of springs
the intensity of frequency of vibration differs: for the system with linear spring the frequency is
smaller than for the system with hard spring and higher than for the system with soft spring.
For all of types of springs it is common that for m1 ¼ 0 and m1 ¼ 1 the frequency of vibration is
indefinitely high and the oscillatory motion disappears: the system moves translatory with
constant acceleration F=M:

3. The amplitudes of vibrations of the both masses, depend on the mass distribution in the system,
on the non-linear properties of the spring and also on the excitation force. For all types of
springs it is evident that for m1om2; the absolute value of the amplitude of vibration of the
mass m1 is larger than for the mass m2: For m1 ¼ m2; the absolute values of the amplitudes of
vibrations of the both masses are equal but in opposite directions. For m1 > m2; the absolute
value of the amplitude of vibration of the mass m1 is smaller than the amplitude of vibration of
the mass m2: For the systems with the same mass ratio but different springs the amplitude of
vibrations differ. For the system with linear spring the amplitude of vibration of the masses m1
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and m2 is higher than for the system with hard spring and smaller than for the system with soft
spring.
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